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In porous media characterized by pore sizes in the range 5-20 A, fluid transport characteristics at low
temperatures may deviate significantly from the classical behavior, due to the interference effect arising
from the quantum wave nature of the fluid atoms. An important consideration in this regard is the size
and temperature dependence of the inelastic scattering length I, for the fluid atom, which directly
governs the magnitude of the quantum deviation. For a sample of size smaller than /;, the transport of
the fluid atoms should be described by the Schrédinger equation confined in the pores. We intend to ad-
dress this problem in two separate papers. In this paper we present the results of calculations for the in-
elastic scattering length in the case of a *“He atom confined in a cylindrical pore. Inside the pore, a
monolayer of physisorbed ‘He atoms is assumed to line the pore wall. Outside the pore, the solid ma-
terial is assumed to be elastic. The thermal excitation of elastic waves results in the distortion of the cy-
lindrical pore surface, which in turn causes transitions between the quantum eigenstates of “He inside
the pore. By choosing some reasonable parameters of a porous medium, we have obtained the inelastic
scattering rate (length) as a function of temperature for two pore radii. Our results show that the inelas-
tic scattering length is on the order of 1 um even at 50 K. This suggests that the quantum interference
effect could be important at low temperatures, and that a deviation from Knudsen flow may be expected.
The explicit calculation of quantum transport in this regime is planned to be the subject of a second pa-
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I. INTRODUCTION

Classical transport of gas or vapor in porous media is
governed by the law of Knudsen flow [1]. Here, the
mean-free path [ of the particle is limited by the pore size,
and the overall transport behavior is diffusive. The per-
meability «, which is the ratio of flow rate to the pressure
gradient, is given by /v /3RT. Since the mean velocity v
is proportional to the square root of the temperature T,
we have k< 1/V'T as a characteristic of the Knudsen
flow [2]. However, in the case where the particle is light
and the pore radius is small enough so that the mean-free
path [ is comparable to the thermal wavelength A, the
quantum interference effect can become important and
the classical treatment of diffusion is questionable. For
ipstance, the value of A for *He atoms at 10 K is about 2
A. If the pore size is on the order of 10 A, one would ex-
pect the flow behavior to deviate significantly from that
described by the Knudsen flow. In addition, due to the
coherent backscattering of the quantum-mechanical
wave, one may also expect the reduction of permeability
due to the localization effect [3]. However, the impor-
tance and observability of the quantum deviation depend
crucially on the size of the inelastic scattering length be-
ing sufficiently large so that the coherent wave interfer-
ence effect may have room to be established. There are at
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least two questions one can raise here. The first one is:
What is the magnitude and dependence of the inelastic
scattering length /; (T)? The second one is: How are the
permeability « and its temperature dependence affected
by [;,(T)? Intuitively, it is expected that [, (T) is a
monotonically decreasing function of T because of the in-
creasing number of modes participating in the inelastic
scattering as T increases. The knowledge of /; (T) is of
crucial importance in understanding and predicting the
behavior of k(7). This is because experiments are always
done on samples of finite size L. At low temperatures,
when L is smaller than [, , x(T) is governed by quantum
diffusion, while at high temperatures a crossover to the
Knudsen flow is anticipated when L becomes larger than
l;n. We shall address these two questions in two separate
papers.

In this first paper, we address only the first question,
i.e., that concerning /; (T). For simplicity, we study the
inelastic scattering rate of a single “He atom in an infinite
cylindrical pore with a monolayer of “He atom phy-
sisorbed on its wall. The physisorption is attributed to
the strong *He-wall attractive interaction [4,5]. The
eigenstates of the single *He atom inside the pore is deter-
mined by its interaction with the “He-monolayer [6].
Below we give a schematic of the steps involved in the
calculation of 1;,(T).

At finite temperatures, the thermal excitation of elastic
waves in the medium surrounding the cylindrical hole is
responsible for disturbing the wall boundary and for pro-
ducing an interaction between the “He atom inside the
wall and the excited elastic waves surrounding the wall.
The first step in the calculation is therefore the deter-
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mination of the eigenstates and the eigenfrequencies of
the elastic system. Through second quantization of the
elastic eigenstates, the Born approximation is used to
determine the transition probability of the *He atom as a
function of temperature due to its coupling to the elastic
excitations through the wall distortions. By choosing
some reasonable parameters of a porous medium, the in-
elastic scattering time and length are then calculated for
two different pore radii for temperatures ranging from 5
to 50 K. The results obtained show that, in contrast to
the case of electrons in dirty metals, the inelastic scatter-
ing length of “He in a narrow cylindrical pore could be on
the order of micrometers even at 50 K. This suggests
that the quantum interference effect could play a dom-
inant role in determining the permeability of dilute “He
gas in narrow-channel porous media at low temperatures.
Explicit calculation of the permeability is under way,
and the results will be reported in a second paper. In
what follows, Sec. II describes the formulation of the in-
teraction Hamiltonian between a “He atom and the elas-
tic waves surrounding the pore. Section III is devoted to
the solution of various elastic eigenfunctions in a cylin-
drical geometry. Expressions for the inelastic scattering
rate and numerical results are presented in Sec. IV. The
paper concludes with a brief summary and discussion in
Sec. V.

II. FORMULATIONS OF THE INTERACTION
HAMILTONIAN

The inelastic scattering mechanism between the *He
gas and a porous medium is simplified by considering the
motion of a single “He atom in an infinite cylindrical pore
surrounded by a homogeneous effective medium. Due to
the strong attractive van der Waals interaction energy be-
tween the pore wall and the “He atom, on the order of
100 K [4,5] (in units of the Boltzmann constant kK, same
below), the first atoms passing through the channel are
expected to be physisorbed and form a layer lining the
wall. Once the layer is formed, the extra “He atom mov-
ing in the pore will interact only with the physisorbed
“He atoms. To derive the interaction between the ‘He
atom and the pore wall, we will further simplify the prob-
lem by assuming that (i) only one completely filled mono-
layer of “He is absorbed on the wall, i.e., neglecting all
other possible fluctuations like partial coverage or the
formation of multilayers; (ii) the monolayer is strongly
bound to the wall, i.e., possessing no internal degree of
freedom; (iii) the *He-pore surface interaction is com-
pletely shielded by the monolayer, and the extra atom
will interact only with the monolayer; and (iv) the “He
gas is so dilute that one can ignore the interaction among
the *“He atoms passing through the channel. The fourth
assumption reduces the problem to a single-particle
Hamiltonian, and Boltzmann statistics becomes applica-
ble. By using the Lennard-Jones 6-12 potential for “He-
“He interaction [6],
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with €=10.22 K, 0 =2.556 A and r the distance between
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two atoms, the total interaction potential between a sin-
gle “He atom and the monolayer is of the form

12 6
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=Tl @

Vplr')=4ey,

1

where r' and r, are, respectively, the coordinates of the
single atom and atoms in the monolayer. If we assume
that the wall is smooth, the average distance between two
nearest-neighbor atoms in the monolayer can be approxi-
mated by the values of r, which minimizes V;,(r). From
dVy;(r)/dr=0, we get ry=6V20 ~2.87 A. The centers
of the monolayer atoms thus form a surface which in cy-
lindrical coordinates can be represented by

p=a+&f(¢,z), (3)

where a is the radial distance from the center of the
cylinder to the monolayer, and §f represents the pertur-
bation of the wall surface caused by the elastic wave exci-
tation surrounding the wall. Here cylindrical coordinates
are used to represent 8f.

The actual radius of the channel is the value a plus the
distance between the monolayer and the wall, on the or-
der of 3 A. The explicit form of the function §f will be
discussed in the next section. With the above description
of the monolayer, we can approximate the summation in
Eq. (2) by an integral that has the form

_ 4ea
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o
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A= .
(@a+8f+p*—2(a+8f)p'cos(p—¢')+(z—2z')
(5)

Expanding A4 to the first order in §f, we find
Vr=V1+8Vr, ©)

where V{ is the potential that affects the “He atom when
the wall is rigid, i.e., =0 in Eq. (5), and 6¥; has the
form

SVrlp',¢',2")
=4rL2“ [® d foz“d¢[6Ag—3Ag]Bsf<¢,z), (7)
O - 0
with
_ 202[p’cos(¢—¢')—a]
[a®+p?—2ap'cos(¢—¢')+(z—2')?]* ’
and A, is the expression given by Eq. (5) with §f=0.

The interaction energy of the *He atom with the wall dis-
tortion can be written as

Vi =018V 9) = [ dry*(0)8V(ow(r) , ©)

where the wave function i of the *He atom can be ex-
panded in terms of the eigenstates of unperturbed Hamil-
tonian, i.e.,

Ho'/’O: ’_

(8)

ﬁ2
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where my;, denotes the mass of a “He atom. For the con-
venience of numerical calculation, we assume here that
the cylindrical hole is of finite length L, extending from
z=—L /2 to L /2 with the periodical boundary condition
at the two ends. Since V2 depends only on p, we can
write eigenfunctions in the form

0 —R ( )eim¢+ikz
¢'n,m,k— n,m\P \/m

where m and k (=2mwq /L) are, respectively, the angular
momentum quantum number and the wave vector along
the z axis. Here m, n, and g denote integers, with n being
the radial quantum number.

Substituting Eq. (11) into Eq. (10), we have

) (11

—# |1 3 3 m? 0
_ —_— | —— |+
{2mHe p 3 [Pop 2 Vr(p) (Rymip)
#k?
0 =0
n,m,k 2 He Rn,m(p)—En,mRn,m(p) ’ (12)

where EJ, . is the eigenenergy of ¢, ;. Numerical
evaluation of ¥(p) and the solutions to Eq. (12) will be
given in Sec. IV. Once the function 1/;2‘ m,k is known, the
interaction energy can be written in a second quantized
form by replacing ¥(r) in Eq. (9) by a field operator

UND= 3 Yma (D s (13)

n,m,k

where a, ,, , is the annihilation operator of a “He atom in
the state (n,m, k). This formulation will prove to be con-
venient in the later calculation. However, for explicit
calculation the information about 8f is required. This is
the subject of the next section.

III. ELASTIC WAVE MODES IN THE
CYLINDRICAL PORE GEOMETRY

In this section, we derive the elastic wave equation in
the cylindrical pore geometry. The stress-free boundary
condition at the pore wall is used to obtain the elastic
wave excitations. Using these solutions, we second quan-
tize the Hamiltonian for the elastic waves as well as &f.
The inelastic scattering rate is then evaluated by using
the Born approximation.

For simplicity, the porous medium and the “He mono-
layer adsorbed on the wall are considered as an effective
medium in which there is a cylindrical pore with effective
radius a. Let (up(r),u¢(r),uz(r)) be the displacement
vector of the effective medium in cylindrical coordinates.
The strain components in cylindrical coordinates can be
derived [7] from the rectangular coordinates x;,x,,X;
through a unitary transformation; i.e., from

€. =1 ai ﬁ , Lj=12,3, (14)
Yool ox;  Ox;
one obtains
aup

€ =—

= 3p (15a)
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_Uup , Ouy
€ =—L 4 , (15b)
® p  pd
ou,
€,= —E; s (15¢)
10u, u, duy
=2 _ — 15d
€po~ €op p 3 p 9 (15d)
1 Ou, duy
sz, 6¢Z p a¢ E— y (156)
du, du,
€:p=€p; = » %2 (15)

The stress-strain relation remains in exactly the same
form as for the rectangular coordinates [7]:

P,,=(h+2p)e,,+repd+Ae,, , (162)
Py =Ne,,+(A+2u)epdp+ e, | (16b)
P, =Ae,,+hedd+(A+2p)e,, , (16¢)
P,,=pe,, , (16d)
Py=€,4, (16€)
Py =pe,y, - (16f)

Here A and p are the Lamé coefficients of the effective
medium. The determination of A and u from the material
components will be described in the next section. The
equation of motion in cylindrical coordinates can be writ-
ten in the following component form:

%, OP oP oP
p _ %o dp zp 1 _
Po at2 = ap + pa¢ + 3z +;(Ppp P¢¢) , (17a)
2
32 3  pdé oz p
d%u, OP oP oP,, P
=P 4 ¢z + —Z 4P 1

Po a7 % 236 % + > (17¢)

where p, is the mass-density of the effective medium.
Substituting Egs. (15) and (16) into (17), one obtains

2 azup l_aup_up

ap2 p ap p2
2

u
£ =(A+2u)

Po 8t2

(uta) du du,
A
apap T A5,

#azup _ (A+3u) Ouy
dz? p? 3 ’
azup d%u,
0¢dp  0z9¢
aZU¢ azu¢ Uy
9p? az? p Op p?

L2 Uy (A+3p) B4,
p2 a¢2 p2 a¢ ’

ou
R (18a)
p° 3¢

Fug _ (utM)

0 32 p

1 0uy  uy

tu

(18b)

and
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u, 3u, 10u, du,
Po or? =(uth) apaz+_; 0z  pd¢ddz
I TP
3> pR P
+(A+2y,)azuz (18c)
3z?

These equations can be simplified by expressing them in
terms of the potentials of u, i.e.,

u=VP+VXA. (19)

The scalar potential gives the longitudinal wave while the
vector potential A gives the two transverse waves.
Without losing generality, A can be written in terms of
two scalar potentials ¥ and y. In cylindrical coordinates,
A has the form [8]

— |18y —9dr
e ’ ’ . (20)
pag 3
Substituting Eq. (20) into (19), we find
ad 13y , %y
= — __+ ,
u, ap+pa¢ 329p (21a)
_13® 1 &y 3
2 2
uz=6£_3_7;__iér___178_7;_ . 210)
9z 93> pdp p*oP

In terms of the three scalar potentials, the new equa-
tions of motion are obtained by substituting Eq. (21) into
Eq. (18). With some manipulation, we get

1 ¥ _pp 80 130 30 o*P

= +—, (22a)
a? dt? > p o pRP’ 3z :
1 3%y _
ES}%—VZ” , (22b)
1 82)( 2
F.é?_v , (22¢)
with
a?=(A+2u)/p, (22d)
B*=u/py - (22e)

Here a and B are, respectively, the sound velocities for
the longitudinal and the transverse waves. Since the
eigenmodes of Eq. (22) with the physical boundary condi-
tion have to be obtained numerically, we assume that the
effective medium extends from z=—L /2 to L/2 and
p=a to b. Here b is the cutoff radius imposed for the
convenience of numerical calculation. The stress-free
boundary condition is applied on both the inner bound-
ary p=a and the outer boundary p=b. Similar to the
case of the “He wave function in Eq. (11), the eigenfunc-
tion of Eq. (22) with frequency o is of the form
(i)

j R
F(l)__
VL

exp(im¢)explikz)exp(—iwt) , (23)

where (i) stands for ®, 7, and y. Substituting Eq. (23)
into Eq. (22), we find

2p (D) (P) 2 2
a:2 +%31;p +|L k-2 [R@®=0, (4a)
o a P
and
2p (v,x) (7,X) 2 2
al;z +%8Rap _;Lz._kZ_.L R X =Q .
o
(24b)

There are three different kinds of elastic waves, depend-
ing on the magnitude of w? and k2 If both
0?/a®—k?>0 and ©*/B*—k?>0, then the solutions of
Eq. (24) have the forms

R®'= 4™, (Mp)+ AN, (Mp) , (25a)
and
RX= 4] (Op)+ AN, (Dp) (25b)
with
) 12
M= |2 —k?
a2 ’
. - (25¢)
Q— ? k l ’

where J,, and N,, are Bessel functions of the first and
second kinds and depend only on the absolute value of m
[9]. The values of A" and A4} are determined by the
boundary condition, to be described later. When both
(0?/a*)—k?<0 and (w?/B*)—k?<0, the solutions of
Eq. (24) become

R@'=APK, (Mp)+ 4{¥1,,(Mp) , (262)
and
R = 40K, (Qp)+ A{PYI, (Qp) , (26b)
with
, 1172 , 1172
M= kz—a)— ’ = kz—w_ ’
[ a? Q B

where I,, and K,, are modified Bessel functions and de-
pend only on the absolute value of m [9]. Thus, they
represent localized surface modes decaying away from
the boundaries p=a or p=b. The third type of mode is
the mixed type. Since a’> B? [see Eq. (22d)], we can have
w?/a*—k?<0 but w?*/B*—k?>0. The solutions are in
the form

R®=A{®1 (Mp)+ AY'K, (Mp) , (27a)
R = A}Y'X)JM(QP)“" A}V,X)Nm(ép) , (27b)
with
, 1172 5 172
— |p2_ @ O= |2 _j2
M [k 2 , Q 5 k l




3054

Equation (27) represents a surface mode for the longitudi-
nal component and a propagating mode for the trans-
verse components. To find the coefficient A’s in the
above solutions, we use stress-free boundary conditions
on both the inner and the outer boundaries, i.e.,

P (p=a,b)=P,(p=a,b)=P,,(p=a,b)=0. (28)

From Egs. (15), (16), and (21), Eq. (28) may be rewritten
as

139 , 1 3’ 3¢
P p=ab)= | —pe*®—2p |~ ——+—=S—+—
po'\P Po H p & o a4 8z’
_ ¥ 1y y
pdpdd  p? 3¢ 3z3p? | |,=as
=O, (293)
_ (203 2 ¥y 23
Pslp=a,b) p 39pd¢  p dpdddz  p? 3¢
2@y 1y, 1oy ¥y
p> 343z p2 3 p3p  3p |,—as
=0, (29b)
and
d an) a3 1 aZ
P,.(p=a,b)=py? L 42 + 25k
pz\P Po ap (] apaz apazz p3 a¢2
2 2
+L3§_7’_+_1_3_X
p’ 36>  2p 3z3¢ |,—,,
=0, (29¢)

where Eqgs. (22a) and (22b) have been used in deriving
Egs. (29a) and (29c). The eigenfrequency w is determined
by the existence of nontrivial solutions of A4’s which satis-
fy the above boundary conditions. For instance, in the
case of propagating modes, by substituting Eqs. (23) and
(25) into Eq. (29a), we find at p=a,

V107 A5+ Y108 AN Y1y AFT
1w AN Yy Ay AX=0,  (30)
with

2M ., =

2
2_"1__Qz }Jm(ﬁa )= ==J,(Ma) ,

Vies= [k2+ a?

) —
Yien = k2+2L2—(22 JN,,,(M"a )—%&N,’,,(Ha) ,

a
V1,0 =2ikQ %J,(Qa), y,,y=2ikQ N,/ (Qa) , 31

Yigg =i 2Tm QJ,’,,(Qa)—%Jm(Q-a)

’

Vign =i [ZTml ‘QN,',,(Q_a)——i-Nm(Qa)] ,
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where
Jn(Ma)=dIm(z)/dz| _4, .

The same definitions are used for N, +(Ma), J,'(Qa), and
N,.(Qa). Also, Egs. (22d) and (25c) have been used in
deriving the relations for y,,, and y,,y. Similarly, from
Egs. (29b) and (29c¢), we find

Yoy Af“‘*’)’zdw Az(vq)) tyays A}y)+y2~yN A,‘J’

Ty A +yun AF=0,  (32)

with
.| 2m —_, 1 —
Yaos =H |7 T MJ,,,(Ma)—;Jm(Ma) , (33a)
_.|2m —_ = 1 —
yzq)‘]_l T MNm(Ma)—;Nm(Ma) ’ (33b)
v = | =2 |07, (@)= 20,0 | (330
_ | —2mk — = 1 —
Youn= 2 QNm(Qa)—;N,,,(Qa) , (33d)
—m2 N, Q )Y A211 i A
y2xJ=TJm(Qa)+7Jm(Qa)_Q J'(Qa) , (33e)
—m2 N, Q‘ r A A2ATI A
J'zXNZ—az—Nm(QaH;Nm(Qa)—Q N.(Qa), (33

and

V305 A5 +y30n A1(v¢)+J’3yJ Aty n AN
+y3u Aty n AF'=0, (34)

with
Yoy =2ikMJ, (Ma) , (35a)
Vion =2ikMN (Ma) , (35b)
2 ——
Y3,0=(Q*—k)0J, (Qa)— 2m3 J,(Qa), (35¢)
a
— (A2 NAN' (A 2m? ~
V3,n=(Q"—k“)ON, (Qa)—=—-N,(Qa), (35d)
a
mk —
J’3XJ=*TJ,,,(Q0) , (35e)
k —
Yyw=—""N,(Qa) . (35

Equations at the boundary p=>5 are simply obtained from
Egs. (30)-(34) by replacing a with b. Thus we have

Yios A;¢)+yid>N AI(\I¢)+yiy.I A}y)‘*')’in A}J’

+Yig A +yin A’ =0, i=4,5 and 6, (36)
where y,pg, ¥spg, and yepg are, respectively, the same ex-
pressions as ypg, V,pg, and y3po with a replaced by b.
Here the index P stands for ®, v, and Y, and Q stands for

J and N. We thus have six homogeneous equations with
six unknowns Ag. The nontrivial solutions are deter-
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mined by the condition

det[y;1=0, (37)

where i=i,...,6 and j corresponds to the vector
[®J,®N,yJ,yN,xJ,xN]. Thus y;,=y,,y, for exam-
ples. For given values of m and k, Eq. (37) is solved nu-
merically for the roots {w;}, which in turn give the non-
trivial solutions of A5 up to an arbitrary constant. Simi-
larly, the same method applies to the case of surface
modes and mixed modes. The corresponding equations
are given in the Appendix. Knowing the eigensolutions
for the scalar potential, the corresponding physical eigen-
states, in terms of the displacement vector
u=(up,u¢,uz ), can be obtained from Eq. (21). In fact, it
is straightforward to show that with our physical bound-
ary condition, expressed by Egs. (28) and (29), the opera-
tor L on the right-hand side of Eq. (18) is Hermitian, i.e.,

[ wLvdr= [ v-Lwydr (38)
Q Q

for any two solutions u, v satisfying Eq. (29), and Q is the
volume occupied by the effective medium. Thus, the
eigenfunctions u, are mutually orthogonal, and the arbi-
trary constant in A5 may be determined by the normali-
zation condition, i.e.,

fnu;-uﬁdr=8a,3 s

where a stands for an eigenstate with fixed m, k, and
w;(m,k), with w;(m,k) denoting the ith eigenmode at
given m and k. This completes the solution procedure
for the eigenfrequencies and the eigenfunctions of the
elastic wave excitations.

Next, we second quantize the elastic waves. The pro-
cedure is parallel to the quantization of elastic waves in
rectangular coordinates [10]. First we notice that the La-
grangian corresponding to Eq. (18) can be written in the
following form:

(39)

_ Po -
L= [ wadr+i [ wLiwdr, (40)

where the force equation (18) has been used to derive the
potential-energy term. The Hamiltonian then has the
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ou
is the momentum density. In the second quantized form,
the displaced field operator U and its conjugate momen-
tum P take the forms

ﬁ 172
U= (u*el +u ) 43)
% 2po0, 5 é
and
172
@
P=i3 % (u2el—u.e), (44)

where a sums all eigenstates {m,k,w,(m,k)} with the
corresponding eigenfrequency w,=w,(m,k) and eigen-
function u, &, and &, are, respectively, the boson
creation and annihilation operators. It is easy to check
that U and P have the following commutation relation:

[UP]=i#S 1, (45)

so the Hamiltonian of Eq. (41) becomes

H=#3 oq(ElE+1) . (46)
a

Now we are ready to write down the explicit form of sur-
face perturbation §f required in the interaction energy
expression of Egs. (7)-(9). Since the components u, and
u, do not alter the shape of the wall surface, only u p is
relevant. We have

172

{[up(p=a)l.£l

+[“p(P=a )]aga} *

Equation (47) completes our construction of H; , between
a “He atom inside the pore and the elastic phonons in the
effective medium. In the next section we derive the ex-
pression for the inelastic scattering rate and present re-
sults of numerical calculations.

8f(4,2)=3 |2p0w

47

IV. INELASTIC TRANSITION RATE AND ITS

form NUMERICAL EVALUATION
_ 1 By combining Egs. (7), (9), (13), and (47), with a change
H " 2p, f np-pdr—%f nu-L (u)dr, @1)  of coordinates in the integration of Eq. (7), the interac-
tion Hamiltonian can be written in the following second
where quantized form:
J
4 172
H_ —_ a , ’ * , ’ . (o' 74 ’ *
S P T e S0P (R0 IR 087 i (012 (@) T,
X} k= k@, kb o, VHAC (48)
with
T 4ea (L2 2 — _ =
8V )y — 5_ 2 t(m9+ky)
k(') = R fo d6(64 3—34 2)Be , (49)
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where 4, and B have the same expressions as 4, and B
in Egs. (5) and (8) but with ¢ —¢’ and z —z’ replaced by 0
and y, respectively. H;, has the standard form of
electron-phonon interaction. The first term in Eq. (48)
represents the creation of an elastic phonon of quantum
number {m,k,w;(m,k)}. The total angular momentum
and the momentum in the z direction are both conserved
during the scattering process. The Hermitian conjugate
(H.c.) term in Eq. (48) represents the annihilation process.
With the explicit form of H;,, we can now calculate
the transition rate by using the standard Born approxi-
J
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where
= [ pdpR} PRy ip)
XSVm,k(p)[u;(a)]m,k,mi , (51)

nn',m',m,k,o;

and
— _ a «
Xn,n',m’,m,k,wi - fO PdP Rn,m’+m(P)Rn',m'(P)
XSI—/m,k(p)[up(a)]m,k,wi ) (52)

In Eq. (50), Zy, denotes the partition function of the *He
atom. It has the form

ZHe= 2

n',m' k'

— g0
E /R T (53)

Here E?. - ;- is the initial-state “He energy obtained from
Eq. (12) (numerically), and n, is the phonon occupation
probability, i.e.,

1

explw,/kgT)— 54

n,=
The terms containing |X *|? and |X ~|? correspond to the
phonon creation and annihilation processes, respectively,
and the factors (n,+1) and n, are terms obtained from
the phonon averages of ¢ §a§a) and (£l£,), respectively
[12]. Equation (50) forms the basis of our numerical cal-
culations.

The numerical calculations are divided into three steps.
In the first step, we solve Eq. (12) numerically for the ei-
genvalues E = and eigenfunctions R, ,,(p) of a ‘He atom
for various m Since Eq. (12) depends only on m?, we
only will solve for m =0. For states with nonzero k the
radial wave function R, ,,(p) remains unchanged from
that with k=0, but the energy becomes
E?, «=EQ, +#%k?/2my.. The function V(p) can be
mtegrated numerically by using Eq. (4). First we consid-
er the case a =7.5 A. The curve V3(p) is plotted in Fig.

(nm,k,a),-

n,m,k,0,(m,k) i

2 0 0
‘Xnn m',m,k, w; | S(En,m’+m,k'+k En',m',k
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mation [11]. To calculate the inelastic scattering rate, the
fluid we are considering here is “He gas in the dilute limit
so that the interaction between “He atoms can be ignored
and condensation of “He atoms is suppressed to very low
temperature, not in the range of our interest here. At
finite temperature T, Boltzmann statistics are used for the
states associated with the single “He atom, while Bose
statistics are used for the elastic phonons. Following the
standard procedure, the transition rate, or the inverse in-
elastic scattering time 7, is found to be

+1)

an+n m',m,k, o; |28(En m'—m,k'—k Er(t)',m’,k+wih)

—wf),  (50)

1. Since we are interested in the value of 7, up to 50 K,
the number of eigenstates we have to use for a fixed m is
such that the highest excitation energy is always greater
than 100 K. For instance, when m =0, the highest value
of n we have solved is n =7, which has an energy
E (7’,0=102.11 K. Compared to the ground-state energy
E8,0= —18.70 K, and excitation energy is AE=102.11
K+18.70 K=120.81 K, which is more than twice the
maximum temperature, 50 K, we are interested in, so
that the calculation should be accurate. As m increases,
the number of n decreases for a fixed maximum energy.
The highest m we have used is m =19. In this case only
the state with n =0 is used so that E0 19—=283.17 K and
excitation energy AE=101.87 K. In Figs. 2 and 3, we
plot some lower-energy states for the cases m =0 and 1,
respectively. The total number of “He states used are 84.
The second step in our calculation is the solution of the
elastic phonon problem described in Sec. III. Before
solving Eq. (37) for the eigenmodes, we have to know the
parameters py, A, and p of the effective medium. By us-
ing the porous silica as our model, the mass density of sil-
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0 1.5 3 45 6 7.5
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FIG. 1. Potential V2(p) acting upon a *He atom in a cylin-
drical pore with a lining of *He atoms. The effective pore radius
is 7.5 A, and p is the radial distance.
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0 1 2 3 o, 4 5 6
p(A)
FIG. 2. Renormalized radial wave functions for n=0,1,2,3
with m =0 and a pore radius a =7.5 A.

jca is 2.3 g/cm®. Taking into account the porosity, we

multiply it by a volume fraction of p=0.75 to obtain
po=1.725 g/cm?. The Lamé constants of crystalline sili-
ca are A,=1.61X10'° N/m? and p;=3.12X10" N/m>.
The effective parameters A and u can be obtained from
the effective-medium theory [13]. By choosing p =0.75,
we find A=0.881X10'© N/m? and p=1.548%10"
N/m?, respectively. The inner boundary has a radius
a=7.5 A, and the outer boundary is fixed at 750 A.
Since b /a =100, we believe this choice of b to be a good
approximation to an infinite bulk system. The value of L
is chosen to be 27/0.001=6283 A. For each given m
and k, {w;,(m,k)} are obtained numerically from the
roots of Eq. (37) for all three types of modes. We have
cut off the solutions with energy #w; greater than 100 K.
Since the number of modes within 100 K decreases as k
increases, the maximum value of k used is 0.4 AL
above which there exists no mode with energy less than
100 K. Also, it is observed that as m increases, it causes
more energy to sustain the same magnitude of u, at p=a.
In fact, the value of u,(a) decreases drastically as m in-
creases for modes of similar energy. We have chosen the
maximum m value to be m,, =4. Further increase of
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FIG. 3. Renormalized radial wave functions for n=0,1,2,3
with m =1 and a pore radius a =7.5 A.

m .. to 6 does not produce any significant change in 7.
The total number of modes obtained is 402 882, of which
215036 come from bulk modes, 187713 come from
mixed modes, and only 133 come from m =0 surface
modes. Although the number of surface modes counter
is rather small, its displacement u p(a) is at least two to
three orders of magnitude greater than that of the other
two kinds of modes, due to its localized surface mode na-
ture. Thus, the contribution from the surface mode is im-
portant in the calculation of 7.

The third step in the calculation is the evaluation of
Eq. (50). In fact, the 8§ function in Eq. (50) can be in-
tegrated directly, and this leads to a simpler expression.
The result of inelastic scattering time is plotted as curve
A of Fig. 4 on a log-log scale. The inelastic scattering
length I, is related to_the inelastic scattering time T;, by
the relation /,,~1/D,7,, when D, is the classical
diffusion constant and has the value D,=~vl /3, where v is
the average velocity of a “He atom in the z direction. It is
simple_to show that the Boltzmann statistics give
v=V'kzT/my,. As a lower bound estimate, we take
the mean-free path as the effective channel diameter, i.e.,
! =2a. Thus, we have

(kgT) |'*

mye

172
2a Tin

3

P
in

(55)

The numerical result on /,, is plotted in curve A4 of Fig. 5
from T=5 K to 50 K. We have also calculated 7;, and
l;, for the case of effective pore radius a =15 A. The
values of b and L remain unchanged here, i.e., b =750 A
and L =6283 A. Using the same criterion, i.e., excitation
energy less than 100° K as the cutoff, we have calculated
359 “He atom eigenstates, E?,, and R, ,(p), from Eq.
(12), of which 17 states (n =16) belong to the case m =0.
The maximum value of m calculated is 47. The total
number of elastic waves calculated in this case is 402 148,
of which 215 351 belong to the bulk mode, 186 608 belong
to the mixed mode, and 189 are from the m =0 surface
mode. The results of 7;;, and /;; are plotted as curves B of
Figs. 4 and 5. It is expected that the larger the radius a,
the shorter the inelastic scattering time. This is because a
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FIG. 4. Log-log plot of the inelastic scattering time i, (sec)
as a function of temperature rarolging from 5-50K, for the cases
a=17.5 A (curve 4) and a=15 A (curve B).
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FIG. 5. Inelastic scattering length /;,, in units of microme-
ters, is plotted as a function of temperature ranging from
5—50K. Curves A4 and B are, respectively, for the cases a =7.5
and 15 A.

large radius reduces the level spacing between the ‘He
states, E,(,’,m and therefore increases the density of states
and the transmission rate. However, this difference is
compensated to some extent by the factor Via [Eq. (55)]
in the inelastic scattering length. This compensation
effect is particularly apparent at the high-temperature re-
ion where the ratio between the values of 7, for a =7.5
A and 15 A is about 2, but the values for /;, are about the
same in the two cases. From Fig. 5 it is seen that in both
cases, /;, decays slowly in the high temperature region,
partly due to the (T)!/* factor in Eq. (55). Although the
accuracy of our calculated results is expected to decrease
as T increases, even in the worst case of T =50 K, our re-
sults are still believed to be correct to within 10-20 %.
We have tested the convergency of our calculation by
using a system of size b=75 A, a=7.5 A, and L =3142
A. For temperatures below 20 K we find less than a 5%
increase in the inelastic scattering time from that of Fig.
4. The Lamé constants of the porous medium used in
this work are about a factor of 2 larger than those of
Vycor glass of porosity 28% and density 1.56 g/cm? [14].
The measured values of Vycor are A=0.49X10!° N/m?
and p=0.75X10" N/m? [15], compared to
A=0.881X10'° N/m? and u=1.548 X 10'° N/m? used in
this work. The effects of the smaller Lamé constants on
the inelastic scattering time can be estimated in the fol-
lowing way. Smaller Lamé constants give smaller sound
speeds that in turn increase the density of states of the
elastic wave and reduce the inelastic scattering time. The
effective medium Lamé constants and density used in this
work give a longitudinal sound speed a =4801 m/sec and
a transverse sound speed $=2996 m/sec. These numbers
are 35% larger than the corresponding measured values
of Vycor samples of porosity 28%, which have a=3570
m/sec and B=2190 m/sec. Since the density of states is
inversely proportional to the sound speed, in Vycor there
are 35% more modes contributing to the inelastic scatter-
ing process. Thus, the Lamé constants we used here may
result in an inelastic scattering length which is 35%
larger than that in Vycor. However, the qualitative con-

clusion of this work, i.e., /;, decays slowly in the high-
temperature region and is on the order of micrometers
even at 50 K, are not altered.

V. DISCUSSION

It should be pointed out that in our model we have as-
sumed an ideal pore channel possessing both azimuthal
symmetry and translational symmetry in the z direction.
Therefore, during a scattering process, the selection rules
require the conservation of both the angular momentum
and the translational momentum in the z direction. How-
ever, in real porous media, the channels are always tortu-
ous and nonuniform. The broken symmetry would allow
transitions that are forbidden in the perfect symmetry
case, thereby increasing the total number of inelastic
scatterings. The scattering amplitude, though, will in
general be reduced compared to that of allowed transi-
tions in the symmetrical case. The combining effect is ex-
pected to change our results quantitatively, but not quali-
tatively. Also, the inelastic scattering length calculated
here is noted to be measured along the pore channel. For
a tortuous pore channel, the straight-line measure could
be smaller due to the tortuosity. For these two reasons,
the actual inelastic scattering length in porous media is
expected to be smaller. Nevertheless, the important con-
clusion we can draw from our calculation is that at tem-
peratures below 20 K, mesoscopic samples that are mi-
crometer in size can exhibit strong quantum interference
effect in the transport of “He gas in pores that are on the
order of 10 A. Strong deviation from Knudsen flow
could be expected in this regime, and a new quantum-
mechanical treatment of the transport property is thus
required. The localization of “He is a strong possibility in
these materials. It is suggested that if the localization
effect is present, then the easiest way to observe that is
through the temperature dependence of the permeability.
The reasoning is as follows. Classically, Knudsen flow
gives the temperature dependence of k(T)~1/( T) 2 ie,
flow becomes easier as temperature decreases. However,
if the quantum interference is present, then the weak lo-
calization effect (coherent backscattering) is known to be
directly dependent on the size of [, i.e., localization
effect increases as /,, increases. Since our calculation
shows that [, increases sharply at low temperatures, it is
expected that it can lead to a lower transport coefficient,
or even an opposite temperature dependence of «(T) from
that predicted by the Knudsen flow. Any experimental
verification of such behavior would be not only interest-
ing but also important for the further understanding of
quantum permeation. Explicit calculations of quantum
transport in this regime is now underway. The results
will be reported in a second paper.
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APPENDIX

To obtain the boundary equations that determine the
surface modes, we substitute Egs. (23) and (26) into Eq.

(29) and yield
Yiek A" +Yior A +yiyx AQ +yi 1 A1
+Yiyk A+ Y A=0, i=12,...,6

(A1)

with
2m? M
Viex = |k*+Q*+ 5 K,,,(Ma)——K (Ma) ,
qu)I k +Q2+ I (M )__——I, (Ma)

y17K=2ikQ2K,’,:(Qa) ,
y171=2ikQ21,’n'(Qa ) ’

(A2)

Vi =i —'”-] IQK,',,(Qa)—%K,,.(Qa) :

.| 2m ' 1
Vi =t [‘a— QI,,,(Qa)—;I,,,(Qa)

.| 2m , 1
Yok =1 Tl {MKM(MG)—;Km(Ma)] )
Vaor=i 2m MI, (Ma)— —I (Ma) | ,
Yayk= Zk—m[—K (Qa)—QK.,(Qa)
,Vz-ﬂ:z—kﬂ %IM(QG)"QI,',,(Qa)

—m? _g 4 21
Yok =" Kn(Qa)t+ aK,,,(Qa)—Q K. (Qa),

= —mz Q ’ 2rn

J’2xz‘—2~1,,,(Qa)+:Im(Qa)——Q 1,/(Qa)

YVieox =2ikMK,’" (Ma) ,
Yior =2ikMI, (Ma) ,

Yk = K, (Qa)
Vi =—(k*+Q

Yok =—"K,(Qa),
Yiu=—1""I,(Qa),

and
Yapg=Y1ppla—b),
Yspp =Yapgla—b),
Yepg =Y3pgla—b) ,
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for p=®, v, and Y and Q=K and I. Similarly for mixed
modes, we have substituted Eqgs. (23) and (27) by Eq. (29).

The following equations are obtained:

Yiok AI((q,)+yi<l>I A4 (¢)}’ny AJY)+yin AIV)

!6’

(A3)

+Yigg A+ Yo AF=0, i=12,...
with
Yok = K, (Ma )—%K,’,,(Ma),
Yior= Q2+ 1,,(Ma )——"11 (Ma),

ylyl=2ikQ ZJI;:(QG) ’
ylyN=2ikQ— ZN;nI(Qa) )

ylx,—z[z o7, (Qa)--—J (Oa)
yiy =i |2 QN,',,(Qa)—%Nm(Qa) ,
_.|2m , 1
Yook =i —;—] [MK,,,(Ma)—;Km(Ma)
2m
yzq,,—z[ . MI,, (Ma)——I (Ma)
2% J (Qa) —
Yows= am ————QJ,,(Qa)
2k N,(Qa) _
yan =510 ——=——0N,,(0a)
—_m2 _ _ _ _
yw=——’;’—Jm<Qa>+%J,;<Qa>—QZJ,',:<Qa> ,
—_ 2 _ O — — —
y2xN=—a’§‘—N,,,(Qa)+%N;,,(Qa)—Q N"(Qa)

y3¢,K=12kMK,',,(Ma) )
y3¢1=i2kMI,'n(Ma) N

J’371=(éz_k2)é-’;ln(éa)_2-m3i-’m(éa) ’
yun=(0?
y3x_,=—ﬂak-Jm(Qa) ,
J’3XN="L::£Nm(Qa) ,

and

Yarg=Y1ppla—b),
Yspg =Yapgla—b),
Yepg =V3pgla—b),

for (PQ)=(®K), (®I), (yJ), (yN), (xJ), and (YN).
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